文章编号:1004-7220(2020)02-0235-05

帕金森病静止性震颤机理的模型仿真

罗银森1、詹倩2、邵静松2

(1. 浙江大学 应用力学研究所, 杭州 310027; 2.浙江中医药大学附属绍兴中医院, 浙江 绍兴 312000)

摘要:目的 研究帕金森病静止性震颤特征与人体反应迟缓的内在联系。方法 结合上肢腕关节的动力学建模,研究腕关节内外翻方向自由度运动特征。引入人体自主控制环节,以控制系统的时滞概念模拟帕金森患者反应延迟特性,进行人体腕关节不自主运动的稳定性分析和动力学响应。结果 通过时滞系统稳定性分析和数值求解,发现当反应延迟一定程度时,帕金森患者的腕关节将发生不自主震颤,与帕金森患者静止性震颤病症契合。结论 帕金森病静止性震颤属于神经系统感觉和动作延迟引起。

关键词:帕金森病; 震颤; 稳定性; 时滞

中图分类号: R 318.01 文献标志码: A

DOI: 10. 16156/j.1004-7220. 2020. 02. 017

Model Simulation of the Resting Tremor Mechanism in Parkinson's Disease

LUO Yinmiao¹, ZHAN Qian², SHAO Jingsong²

(1. Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China; 2. Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang, China)

Abstract: Objective To study the internal relationship between resting tremor and slow response in patients with Parkinson's disease. Methods The movement characteristics of wrist joints in valgus direction was studied by dynamic modeling on wrist joints of the upper limbs. The system delay concept was introduced with human autonomous control and the sensory delay characteristics of Parkinson's patients was simulated, to make stability analysis and dynamic response of the involuntary wrist movement. Results The stability analysis and numerical solution of this time-delayed control system showed that when the sensation was delayed to a certain extent, involuntary tremor of wrist joints in patients with Parkinson's disease would happen, which conformed to resting tremor from Parkinson's disease. Conclusions Resting tremor from Parkinson's disease is caused by sensation and movement delay.

Key words: Parkinson's disease; tremor; stability; time-delay

大量的医学观察与研究表明,原发性帕金森病(Parkinson's disease, PD)是一种进行性神经变性病,病理改变是中脑黑质多巴胺能神经元的变性死亡、纹状体多巴胺含量显著减少以及黑质残存神经

元胞质内出现嗜酸性包涵体。其运动损害症状主要表现为静止性震颤、运动迟缓、肌肉强直和平衡障碍。通常静止性震颤多始于一侧上肢远端,拇指与屈曲的食指间呈"搓丸样",频率为 4~7 Hz,随意

运动时减轻或停止[1-2]。

神经运动控制理论认为:中枢神经系统发出 冲动,在神经纤维上通过动作电位传导,引起骨骼 肌细胞的电位变化使肌肉收缩,带动关节运动。 同时,肌肉、关节的本体感觉器官通过感觉神经纤 维将正在执行的运动状态(如位置、速度、作用力 或者特定姿态等信息)反馈回中枢控制系统,由其 整合和评估,进一步修正运动偏差[3-4]。这一过程 联合了中枢神经系统、肌肉骨骼系统以及感觉器 官,而原发性 PD 震颤也不例外。早前研究多从中 枢神经系统的基底节回路[5-6]和小脑-丘脑-皮层回 路[7-8] 阐释震颤的发生调节机制,并结合多自由度 关节开展动力学建模[9-10],利用关节功能电刺激进 行腕关节震颤遏制的仿真[11-12],但对于本体感觉 器官的反馈调节少有涉及。实际上,已有研究证 实在无视觉反馈的情况下,人手在握物受扰后恢 复平衡反应时间有延迟,导致运动幅度加大[13]。 根据控制理论原理,传感器信号反馈的时滞对系 统稳定性有重要影响;而有研究表明,PD 与反应 延迟(时滞)具有相关性[14-15]。本文针对手腕运动 中控制环节的延迟建立数学模型,解释静止性震 颤现象。

1 模型和方法

人体运动具有高灵活性、短时延性和准确性。 人体肌肉骨骼系统在神经系统的控制下完成各种动作,包括 PD 静止性震颤。因此,神经控制系统需要通过人体生理上的各种协调规律和约束,寻找完成运动的方式。对于运动控制和姿态维持的机理,早期 Hogan^[4]提出了上肢运动的控制理论:一旦人手被扰动,会趋向试图回到自己原来的位置;人的肢体在不同空间位置具有特定刚度,多关节运动的协调控制就是要保持这种刚度。Latash等^[16]研究认为,人体神经肌骨系统就是在不断寻求某种平衡点以完成协调运动,平衡点的位置与上肢刚度有关。本文结合前人的研究,将上肢肢体在平衡位置附近对运动方程进行简化,并分析简化后的多自由度动力学控制系统(见图 1)。

针对腕关节动作的动力学问题,考虑目前普遍 采用的腕关节的肌骨模型^[9],腕部肌骨模型主要包括4块肌肉,分别为桡侧腕长伸肌(extensor carpi radialis longus, ECRL)、尺侧腕伸肌(extensor carpi ulnaris, ECU)、桡侧腕屈肌(flexor carpi radialis, FCR)、尺侧腕屈肌(flexor carpiulnaris, FCU)。FCU、FCR 主要参与腕关节内翻, ECRL、ECU 主要参与腕关节外翻, FCR、ECRL 主要参与腕关节上切, FCU、ECU 主要参与腕关节下切, 内外翻和上下切两自由度上有耦合关系的腕关节动力学模型。把腕关节看成一个两轴不相交的万向节, 腕关节上下切方向以x 轴为旋转轴, 旋转角度为 β ; 腕关节内外翻方向以z 轴为旋转轴, 旋转角度为 β ; 脱关节内外翻方向以z 轴为旋转轴, 旋转角度为 β ; 以y 轴为旋转轴,旋转角度为 β , 以y 种为旋转轴,旋转角度为 β , 以y 种为旋转轴,旋转角度为 β , 以y 种为旋转轴,旋转角度为 β , 对应的利度为 β , 对应的利度为 β , 和

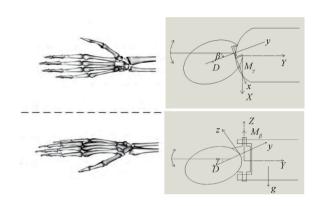


图 1 关节运动自由度示意图[11]

Fig.1 Sketch map of the degree of freedom of joint motion

其运动方程在平衡位置附近线性化后可表达 为^[17].

表 1 中: I_{Hx} , I_{Hy} 与 I_{HZ} 为分别对于 x, y, z 轴的转动惯量;g 为重力加速度;l 为关节到手掌质量中心的距离;m 为手掌质量。根据已有的相应人体腕关节参数测试[17-18],采用的平均值见表 2。

表 1 公式(1)中各符号含义

Tab.1 Symbolic meanings in formula (1)

符号	
A	$I_{Hx}\sin^2\beta + I_{Hy}\cos^2\beta\cos^2\gamma + I_{Hz}\sin^2\gamma\cos^2\beta + I_{Ay}$
В	$\coseta\cos\gamma\sin\gamma(I_{H_{2}}-I_{H_{2}})$
C	$I_{Hx}\sinoldsymbol{eta}$
D	$I_{H_{\mathcal{Y}}}\sin^2\gamma + I_{H_{\mathcal{Z}}}\cos^2\gamma$
\boldsymbol{E}	0
$\boldsymbol{\mathit{F}}$	$I_{H \mathrm{y}}$
G	$I_{H_x}[\dot{\beta}{\cos\beta}(\dot{\gamma}+2\dot{\alpha}{\sin\beta})]+I_{H_y}[\cos\beta{\cos\gamma}(\dot{\beta}\dot{\gamma}{\cos\gamma}-\dot{\alpha}\dot{\beta}{\sin\beta}{\cos\gamma}-\dot{\alpha}\dot{\gamma}{\cos\beta}{\sin\gamma})-$
	$(\dot{\beta}\sin\gamma + \dot{\alpha}\cos\beta\cos\gamma)(\dot{\beta}\sin\beta\cos\gamma + \dot{\gamma}\cos\beta\sin\gamma)] + I_{Hz}[\cos\beta\sin\gamma(\dot{\beta}\dot{\gamma}\sin\gamma + \dot{\alpha}\dot{\gamma}\cos\beta\cos\gamma - \dot{\alpha}\dot{\beta}\sin\beta\sin\gamma) +$
	$(\dot{eta}\cos\gamma - \dot{lpha}\coseta\sin\gamma)(\dot{eta}\sineta\sin\gamma - \dot{\gamma}\coseta\cos\gamma)]$
H	$-I_{Hx}\dot{\alpha}\cos\beta\left(\dot{\gamma}+\dot{\alpha}\sin\beta\right)+I_{Hy}\left[\dot{\alpha}\sin\beta\cos\gamma(\dot{\beta}\sin\gamma+\dot{\alpha}\cos\beta\cos\gamma)\right.\\ \left.+\dot{\gamma}\cos\gamma(2\dot{\beta}\sin\gamma+\dot{\alpha}\cos\beta\cos\gamma)\right.\\ \lefti_{Hx}\dot{\alpha}\cos\beta(\dot{\gamma}+\dot{\alpha}\sin\beta)\right]$
	$\dot{\alpha}\sin\gamma(\dot{\beta}\sin\beta\cos\gamma+\dot{\gamma}\cos\beta\sin\gamma)\big]+I_{H_2}\big[\dot{\alpha}\sin\beta\sin\gamma(\dot{\alpha}\cos\beta\sin\gamma-\dot{\beta}\cos\gamma)+\dot{\alpha}\cos\gamma(\dot{\beta}\sin\beta\sin\gamma-\dot{\gamma}\cos\beta\cos\gamma)-$
	$\dot{\gamma}\sin\gamma(2\beta\cos\gamma-\dot{\alpha}\cos\beta\sin\gamma)$
I	$I_{Hx}\alpha\beta\cos\beta + I_{Hy}(\beta\sin\gamma + \alpha\cos\beta\cos\gamma)(\alpha\cos\beta\sin\gamma - \beta\cos\gamma)(\beta\sin\gamma + \alpha\cos\beta\cos\gamma)(\alpha\cos\beta\sin\gamma - \beta nn\cos\gamma) - I_{Hz}(\beta\sin\gamma + \beta nn\alpha) - I_{Hz}(\beta\alpha\alpha) - I$
	$lpha\coseta\cos\gamma$) ($lpha\coseta\sin\gamma-eta\cos\gamma$)

表 2 男、女性多自由度模型参数平均值[17]

Tab.2 Mean values of male and female model parameters

参数	男	女
m/kg	0. 439	0. 346
$l/{ m mm}$	66. 5	58. 6
$I_{Hx/}/(\mathrm{kg\cdot m^2})$	0.003 17	0.0018
$K_{\gamma\gamma}/[(N \cdot m) \cdot rad^{-1}]$	2. 92	2. 24
$B_{\gamma\gamma}/[(N \cdot m) \cdot s \cdot rad^{-1}]$	0.088 2	0.095 9

PD 震颤主要表现在上肢^[2,11],在临床研究中又以握物稳定性为典型姿态。本文研究对多自由度式(1)简化,并与临床研究数据相对应,仅考虑腕关节内外翻方向,即以z 轴为旋转轴,旋转角度为 γ 的自由度,如不考虑神经系统控制功能,动力学方程可以简化为:

$$M_{\gamma} = \ddot{\gamma}I_{Hx} + \dot{\gamma}B_{\gamma\gamma} + \gamma K_{\gamma\gamma} - glm \qquad (2)$$

大脑通过神经系统对人体机体控制,但是因为人体生物系统的高度复杂性,相应的控制律没有确切的研究结论。在建立中枢神经系统对运动神经元刺激模型的过程中,代表性的有内驱力模型[19],即用预想运动的目标位置与当前运动位置的偏差作为躯体感觉中枢的输出和躯体运动中枢的输入,用 PID 算式来表征躯体运动中枢的分析和计算过程,最终计算出中枢神经系统对肌肉神经元的刺激,从而建立中枢神经系统控制肌肉的内驱力模

型。为了更符合现实,并使得该模型具有使用价值,将此角度偏差定义为目标角度与当下角度的偏差,即平衡位置附近的运动。另一方面,对于静置状态下掌关节的微动问题,可以将控制力函数在该位置附近展开,取其一阶小量,同时本次研究仅仅考虑手的动感,不考虑触觉、温度、痛感等其他感觉传感,腕关节运动的控制流程见图 2 所示。其主动控制力一般形式为:

$$M = \begin{bmatrix} M_{\beta} \\ M_{\gamma} \end{bmatrix} = M \quad \theta, \dot{\theta}, \ddot{\theta}, T, p, \cdots$$
 (3)

平衡位置附近展开的小参数形式为:

$$M = K_{d} \dot{\theta}(t - \tau) + K_{a} \theta(t - \tau) \tag{4}$$

式中: K_a 为速度反馈控制比例系数; K_a 为位置反馈控制比例系数; τ 为感觉延迟, 在控制系统中称之为时滞。感觉系统是分布式的神经系统, 不同部位的时滞一定是不一致的, 本文仅仅针对手指的速度感觉延迟, 故只需要单一时滞参数。

观测研究表明, PD 患者比健康人有明显的 反应延迟[14-15], 其典型的实验数据见表 3。在反 馈控制系统中, 时滞一般会引起控制效率的下 降、甚至系统不稳定。根据图 2 人体腕关节运动 控制流程, 本文试图分析 PD 患者腕关节运动反 馈系统不稳定现象,揭示 PD 患者静止性震颤的物理机理。

表 3 不同被试者的时间延迟实验值[14]

Tab.3 Experimental time delay of different subjects

•	·	•
类别	被试者编号	反应延迟/ms
正常被试者	1	20
	2	0
	3	20
	4	20
	5	20
	6	0
	平均值	13
PD 患者	7	190
	8	220
	9	260

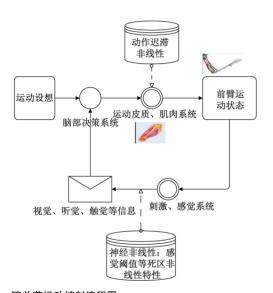


图 2 腕关节运动控制流程图

Fig.2 Flow chart of wrist motion control

当腕关节旋转有意识地保持静止或者缓慢运动时,扭矩为神经系统的一个速度反馈函数。考虑时滞的速度线性反馈系统

$$\ddot{\gamma}I_{HX} + \dot{\gamma}B_{\gamma\gamma} + \gamma K_{\gamma\gamma} =$$

$$f(t, \dot{\gamma}, \dot{\gamma}, \gamma, \tau) = -K_{d}\dot{\gamma}(t - \tau) \quad (5)$$

改写为规范形式:

$$\dot{Z}(t) = A_0 Z(t) + A_1 Z(t - \tau)$$
 (6)

式中:

$$Z(t) = \begin{bmatrix} \gamma(t) \\ \dot{\gamma}(t) \end{bmatrix} \cdot A_0 = \begin{bmatrix} 0 & 1 \\ -\frac{K_{\gamma\gamma}}{I_{Hx}} & -\frac{B_{\gamma\gamma}}{I_{Hx}} \end{bmatrix} \cdot A_1 =$$

$$\begin{bmatrix} 0 & 0 \\ 0 & -K_{\rm d}/I_{\rm {\it Hx}} \end{bmatrix}$$

2 结果

分析腕关节旋转运动的时滞系统在零点位置 (平衡位置)线性稳定性,特征方程为:

$$\lambda^2 I_{Hx} + \lambda B_{\gamma\gamma} + K_{\gamma\gamma} = K_{\rm d} \lambda \,\mathrm{e}^{-\lambda\tau} \tag{7}$$

稳定性边界为:

$$K_{\rm d} = \frac{\sqrt{\left(I_{Hx}\omega^2 - K_{\gamma\gamma}^2\right)^2 + \beta^2\omega^2}}{\omega} \tag{8}$$

$$\tan(\omega\tau) = \arctan\left(\frac{K_{\gamma\gamma} - I_{Hx}\omega^2}{\omega\beta}\right)$$
 (9)

采用表 1 的数据,借助 Maplesoft 软件对式(8)、式(9)数值求解稳定性边界(见图 3)。该稳定性边界与人体生物力学特性有关,图 3 显示的最直接参数是腕关节-神经系统的速度增益 K_d 。健康人体对外界的感知与反应敏感,速度增益 K_d 很小。只有在人体衰老或者病变时,对外界的感知与反应趋向迟钝,就越容易诱发震颤。

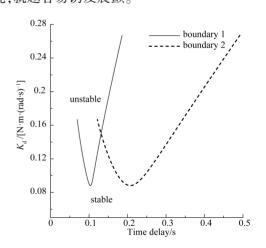


图 3 速度反馈模型的稳定性边界

Fig.3 Stability boundary of the velocity feedback model

震颤稳定性分析结果式(9)是周期性函数,故图3的稳定性边界是一簇时滞方向平移的曲线。在判别稳定性边界时,可以按照以速度增益的最小值分析简单明了。如在本文采用的参数下,速度增益小于0.089,则腕关节不会产生震颤。

感觉延迟 0.24 s 患者腕关节震颤响应数值求解结果如图 4 所示。计算结果表明,当感觉延迟较大时,腕关节会产生不由自主的震颤运动;本算例

的震颤频率为 5.6 Hz,与控制系统回路时滞大小、腕关节生物力学特性有关。

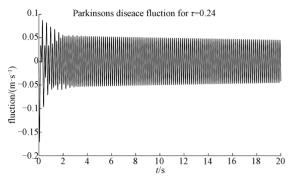


图 4 速度反馈模型的震颤速度

Fig.4 Tremble of the velocity feedback model

本节讨论的腕关节震颤问题采用了简化的单自由度单一时滞模型。当时滞时间充分长时,对应腕关节功能与神经系统机能十分低下状态,不在本文讨论范畴。

3 讨论和结论

本文通过上肢腕关节的动力学模型,引入人体自主控制环节,考虑 PD 患者感觉延迟特性,建立人体腕关节时滞控制系统方程,进行人体腕关节有意识运动的稳定性分析和动力学响应,发现当感觉延迟一定程度时,PD 患者的腕关节将发生不由自主的震颤,再现了 PD 患者具有的静止性震颤特征。

PD 又称震颤麻痹,主要运动症状包括静止时肢体或头面部不自主地震颤,肌肉僵直,运动缓慢,以及姿势平衡障碍等,而肌肉僵直等特征会严重影响机体感知与驱动。根据本文的分析推断,PD 静止性震颤属于与机体感知与驱动相关联的神经系统感觉和动作延迟引起。

静止性震颤在医学上有很多解释。最近也有研究提出机体网络失常因素^[20],脑活动相关的 PD 震颤首先出现在基底神经节,然后传播到小脑-丘脑-皮层回路,在那里震动节奏保持和放大。但是不论是生理学角度还是生物力学角度的研究,都无法定量或者部分定量解释静止性震颤。本文采用简化的腕关节动力学时滞控制模型,将 PD 表观的行动迟缓、肌肉僵直等现象与震颤有机地联系起来,初步的研究结果与典型的 PD 静止性震颤现

象十分吻合。本文的研究思路对探讨 PD 静止性 震颤机理、制定对应康复措施具有十分积极的意 义。

参考文献:

- [1] DAVIE CA. A review of Parkinson's disease [J]. Br Med Bull, 2008, 86(1): 109-127.
- [2] BHATIA KP, BAIN P, BAJAJ N, et al. Consensus statement on the classification of tremors. From the task force on tremor of the International Parkinson and Movement Disorder Society [J]. Mov Disord, 2018, 33(1): 75-87.
- [3] PETERKA RJ. Sensorimotor integration in human postural control [J]. J Neurophysiol, 2002, 88(3): 1097-1118.
- [4] HOGAN N. The mechanics of multi-joint posture and movement control [J]. Biol Cybern, 1985, 52(5): 315-331.
- [5] LEVY R, HUTCHISON WD, LOZANO AM, *et al.* High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor [J]. J Neurosci, 2000, 20(20): 7766-7775.
- [6] HURTADO JOSÉ M, RUBCHINSKY LL, SIGVARDT KA, et al. Temporal evolution of oscillations and synchrony in gpi/muscle pairs in Parkinson's disease [J]. J Neurophysiol, 2005, 93(3): 1569-1584.
- [7] HELMICH RC, JANSSEN MJ, OYEN WJ, *et al.* Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor [J]. Ann Neurol, 2011, 69(2): 269-281.
- [8] TIMMERMANN L, FINK GR. Pathological network activity in Parkinson's disease: From neural activity and connectivity to causality? [J]. Brain, 2011, 134(2): 332-334.
- [9] CHARLES SK, HOGAN N. Dynamics of wrist rotations [J]. J Biomech, 2011, 44(4): 614-621.
- [10] ADEWUSI S, RAKHEJA S, MARCOTTE P. Biomechanical models of the human hand-arm to simulate distributed biodynamic responses for different postures [J]. Int J Ind Ergon, 2012, 42(2): 249-260.
- [11] 张伟,张定国,刘建荣.基于功能性电刺激的腕关节多自由度震颤抑制仿真研究[J].生物医学工程学杂志,2015,32(2):423-429.
- [12] ZHANG D, WINDJAJA F, YAP SC. Neural oscillator based conrtol for wrist tremor attenuation [C]//Proceedings of IEEE International Conference on Computational Cybernetics. Gammarth; IEEE, 2007; 197-202.
- [13] 姜明文,王人成,金德闻,等. 握物受扰平衡恢复时上肢运动控制机理的实验研究[J]. 航天医学与医学工程,2006,19(2):139-142.
- [14] 王敏. 帕金森病患者的辅助诊断与手运动补偿研究[D]. 上海: 华东理工大学, 2012.

(下转第246页)